What Remains to be Discovered: Mapping the Secrets of the Universe, the Origins of Life, and the Future of the Human Race

What Remains to be Discovered: Mapping the Secrets of the Universe, the Origins of Life, and the Future of the Human Race

$12.00 AUD

Availability: in stock at our Melbourne warehouse.

NB: This is a secondhand book in very good condition. See our FAQs for more information. Please note that the jacket image is indicative only. A description of our secondhand books is not always available. Please contact us if you have a question about this title.

Author: John Royden Maddox

Format: Hardback

Number of Pages: 434


This book springs from a question first asked by my son Bruno: "If you're editor of "Nature, " why can't you say what will be discovered next?" In 1995, when I knew I would be leaving that thoroughly international science journal after nearly 23 years as editor-in-chief, it seemed that it would be useful to set down in simple language an account of what scientists are hoping to achieve. One of the joys of being such an editor is listening to researchers eagerly enthuse about the significance and possible outcomes of their work, while knowing at the same time that they would never be so enthusiastic about their research in print. Why not distill that unrestrained chatter into an account of where science is heading, of what remains to be discovered? I was much helped when the Brookhaven National Laboratory invited me, in June 1996, to deliver its annual Pegram Lectures. It was an opportunity to see whether my ideas about the future of science hung together, and, having completed the lecture series, I was encouraged and emboldened. As work on the manuscript of this book proceeded, my son Bruno came to my aid. He raised serious and thoughtful objections to an early version, and I am deeply grateful for his perceptive criticism ever since. What remains to be discovered is not, of course, the same as what will be discovered. It is possible to tell what loose ends are now dangling before us, but not how they will eventually be pulled together. People who knew that would take themselves off to a laboratory confident that a Nobel Prize would soon be on the way. Science at present is a curious patchwork. Fundamental physics is perhaps the oddest: the research community is dividedinto those who believe that there will be a "theory of everything" very shortly and those who suspect (or hope) that the years ahead will throw up some kind of "new physics" instead. History is on the side of the second camp, to which I belong. By contrast, exuberant molecular genetics seems in a state in which any problem that can be accurately defined can be solved by a few weeks' work in a laboratory. There, it is more difficult to tell what problems will emerge -- as they certainly will. I am aware that many important fields of science are not touched by this survey of outstanding problems. The most obvious is that of the solar system. The closing third of this century has seen a quite remarkable transformation of our views of how the Earth is built. The doctrine of plate tectonics (continental drift) has been firmly established. Superficially, the matter appears to have been tidied up. But a little reflection shows that to be an illusion. The mechanism that drives the tectonic plates over Earth's surface is far from clear. More to the point, it remains to be seen how the same ideas can be applied to the understanding of other solid objects in the solar system -- both planets such as Venus and satellites of Jupiter such as the strange object Io. And exactly how were the planets formed from the solar nebula, anyway? These are all absorbing questions but no new principles are involved. ...... Two close friends of mine have read the penultimate version of this text. Professor Maxime Frank-Kamanetsky, a molecular biologist whom I first met in Moscow in 1986 and who is now a member of the faculty at Boston University, and Dr. Henry Gee, "Nature" 's resident paleontologistwho has a catholic interest in all of science, have both made valuable and constructive suggestions. I owe them a great debt, although the errors and the omissions that remain are my own responsibility. I am also grateful to my publishers, who have put up with my vacillation, and particularly to Stephen Morrow of The Free Press, who has helped enormously to shape this text by providing a stream of pointed and detailed comment on its successive versions, always with intelligence and good humor. ...... And the message? Despite assertions to the contrary, the lode of discovery is far from worked out. This book provides an agenda for several decades, even centuries, of constructive discovery that will undoubtedly change our view of our place in the world as radically as it has been changed since the time of Copernicus. Indeed, the transformation in prospect is likely to touch the imagination of all of us dramatically. How shall we feel when we know the true history of the evolution of "Homo sapiens" from the great apes? And when there are found to be, or even to have been, living things elsewhere in the galaxy? But that is merely the tip of the iceberg of future discovery. The record shows that generations of scientists have been repeatedly surprised by discoveries that were not anticipated and could not have been guessed at by much earlier versions of a book like this.
Reviews

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)
Description
NB: This is a secondhand book in very good condition. See our FAQs for more information. Please note that the jacket image is indicative only. A description of our secondhand books is not always available. Please contact us if you have a question about this title.

Author: John Royden Maddox

Format: Hardback

Number of Pages: 434


This book springs from a question first asked by my son Bruno: "If you're editor of "Nature, " why can't you say what will be discovered next?" In 1995, when I knew I would be leaving that thoroughly international science journal after nearly 23 years as editor-in-chief, it seemed that it would be useful to set down in simple language an account of what scientists are hoping to achieve. One of the joys of being such an editor is listening to researchers eagerly enthuse about the significance and possible outcomes of their work, while knowing at the same time that they would never be so enthusiastic about their research in print. Why not distill that unrestrained chatter into an account of where science is heading, of what remains to be discovered? I was much helped when the Brookhaven National Laboratory invited me, in June 1996, to deliver its annual Pegram Lectures. It was an opportunity to see whether my ideas about the future of science hung together, and, having completed the lecture series, I was encouraged and emboldened. As work on the manuscript of this book proceeded, my son Bruno came to my aid. He raised serious and thoughtful objections to an early version, and I am deeply grateful for his perceptive criticism ever since. What remains to be discovered is not, of course, the same as what will be discovered. It is possible to tell what loose ends are now dangling before us, but not how they will eventually be pulled together. People who knew that would take themselves off to a laboratory confident that a Nobel Prize would soon be on the way. Science at present is a curious patchwork. Fundamental physics is perhaps the oddest: the research community is dividedinto those who believe that there will be a "theory of everything" very shortly and those who suspect (or hope) that the years ahead will throw up some kind of "new physics" instead. History is on the side of the second camp, to which I belong. By contrast, exuberant molecular genetics seems in a state in which any problem that can be accurately defined can be solved by a few weeks' work in a laboratory. There, it is more difficult to tell what problems will emerge -- as they certainly will. I am aware that many important fields of science are not touched by this survey of outstanding problems. The most obvious is that of the solar system. The closing third of this century has seen a quite remarkable transformation of our views of how the Earth is built. The doctrine of plate tectonics (continental drift) has been firmly established. Superficially, the matter appears to have been tidied up. But a little reflection shows that to be an illusion. The mechanism that drives the tectonic plates over Earth's surface is far from clear. More to the point, it remains to be seen how the same ideas can be applied to the understanding of other solid objects in the solar system -- both planets such as Venus and satellites of Jupiter such as the strange object Io. And exactly how were the planets formed from the solar nebula, anyway? These are all absorbing questions but no new principles are involved. ...... Two close friends of mine have read the penultimate version of this text. Professor Maxime Frank-Kamanetsky, a molecular biologist whom I first met in Moscow in 1986 and who is now a member of the faculty at Boston University, and Dr. Henry Gee, "Nature" 's resident paleontologistwho has a catholic interest in all of science, have both made valuable and constructive suggestions. I owe them a great debt, although the errors and the omissions that remain are my own responsibility. I am also grateful to my publishers, who have put up with my vacillation, and particularly to Stephen Morrow of The Free Press, who has helped enormously to shape this text by providing a stream of pointed and detailed comment on its successive versions, always with intelligence and good humor. ...... And the message? Despite assertions to the contrary, the lode of discovery is far from worked out. This book provides an agenda for several decades, even centuries, of constructive discovery that will undoubtedly change our view of our place in the world as radically as it has been changed since the time of Copernicus. Indeed, the transformation in prospect is likely to touch the imagination of all of us dramatically. How shall we feel when we know the true history of the evolution of "Homo sapiens" from the great apes? And when there are found to be, or even to have been, living things elsewhere in the galaxy? But that is merely the tip of the iceberg of future discovery. The record shows that generations of scientists have been repeatedly surprised by discoveries that were not anticipated and could not have been guessed at by much earlier versions of a book like this.